III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

REFRIGERATION AND AIR CONDITIONING (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks	
	UNIT-I					
1	a)	How do you explain the necessity of providing	L2	CO1	5 M	
		air conditioning to the air crafts?				
	b)	An air refrigeration system working on Bell-	L4	CO1	9 M	
		Coleman cycle takes air into compressor to				
		5 bar and cooled to 25° C at the same pressure.				
		It is further expanded in an expander to 1 bar				
		and discharged to take cooling load. The				
		isentropic efficiencies of the compressor and				
		expander are 80 % and 85 % respectively.				
		Calculate				
		(i) Refrigeration Capacity of the system if the				
		air circulated is 40Kg/min.				
		(ii) HP required to run the compressor and				
		(iii) COP of the system.				
OR						
2	a)	With a neat sketch explain Bootstrap air	L3	CO1	5 M	
		refrigeration system with evaporative cooling				
		method.				

Max. Marks: 70

	b)	A dense air refrigeration cycle operates	L4	CO1	9 M			
	- /	between the pressures of 3 bar and 15 bar. The			_			
		air temperature after heat rejection to						
		surroundings is 27° C and air temperature at						
		exit of the refrigerator is 3° C. Determine						
		C C						
		compressor and turbine work per TR. Take $V = 1.4$ and $C = 1.005 k V/k = V$						
		$\gamma = 1.4$ and $C_p = 1.005$ kJ/kg K						
	UNIT-II							
3	a)	With a neat sketch, explain the working	L3	CO2	5 M			
		principle of a Thermo Static Expansion valve.						
	b)	R-717 refrigerator based on ideal Vapor	L4	CO2	9 M			
		compression cycle operates between the						
		temperature limits of -20° C and 40° C. The						
		refrigerant enters the condenser as saturated						
		vapor and leaves as saturated liquid in						
		condenser. If the refrigerant circulation is						
		0.025kg/s, find						
		(i) COP						
		(ii) dimensions of the compressor, if						
		L:D = 1.5, N=2500RPM.						
		$c_{pl}=4.583$ kJ/kg K, $c_{pv}=4.825$ kJ/kg K.						
		OR						
4	a)	With a neat sketch, explain the working	L3	CO2	5 M			
•	<i>u)</i>	principle of a Evaporative Condenser.	L 5		0 111			
	b)	A refrigeration plant operates in quasi- ideal	L4	CO2	9 M			
	0)	Vapor compression cycle. The R-12 is used	LT) IVI			
		having Saturation temperatures in the						
		evaporator and condenser as -5° C and						
		40° C respectively. The vapor enters the						
		compressor as a saturated vapor and is sub						
		cooled to 20° C before entering the throttle						
		valve. Calculate (i) Work done per Kg of						
		refrigeration. (ii) RE/kg of Refrigeration						
		(iii) COP. Take cpl=0.923kJ/kg K,						
		cpv=0.988kJ/kg K						

5	a)	UNIT-III Explain the working principle of Lithium	L3	CO2	7 M
5	<i>u)</i>	bromide-Water Vapor Absorption refrigeration	Ц3	002	/ 1/1
		System with a neat sketch.			
	b)	Demonstrate the working principle of a vortex	L3	CO2	7 M
		tube refrigeration system with a neat sketch.			
		OR			
6	a)	With a neat sketch, derive the COP of a simple	L3	CO2	7 M
		vapor absorption refrigeration system.			
	b)	Demonstrate the working principle of a	L3	CO2	7 M
		Electrolux vapor absorption refrigeration			
		system with a neat sketch.			
		UNIT-IV			
7	a)	Explain i) Dew point temperature	L2	CO1	5 M
		ii) Saturated air iii) Wet bulb depression			
		iv) Air conditioning v) Psychrometry in detail.			
	b)	The pressure, dry bulb temperature and relative	L4	CO3	9 M
		humidity of air in a room are 1 bar, 30 °C and			
		70%, respectively. If the saturated pressure at			
		30 ^o C is 4.25 kPa , Determine the specify			
		humidity of the room air in kg water vapor / kg			
		dry air.			
	T	OR		1	
8	a)	Show the adiabatic dehumidification and	L3	CO3	5 M
		adiabatic saturation processes on			
		Psychrometric Chart. Explain their			
		significance.			
	b)	Dew point temperature of air at one	L4	CO3	9 M
		atmospheric pressure (1.013 bar) is 18° C.			
		The air-dry bulb temperature is 30° C. The			
		saturation pressure of water at 18° C and			
		30^{0} C are 0.02062 bar and 0.04241 bar			
		respectively. The specific heat of air and water			
		vapor respectively are 1.005 and 1.88 kJ / kg K			

				1 1			
		and the latent heat of vaporization of water at					
		0^{0} C is 2500 kJ / kg. Determine the specific					
		humidity (kg/ kg of dry air) and enthalpy (kJ /					
		kg or dry air) of this moist air respectively.					
	UNIT-V						
9	a)	Illustrate in detail Human comfort and	L3	CO3	5 M		
		Industrial air conditioning requirements.					
	b)	A library hall is to be maintained at 24 ⁰ C DBT	L4	CO3	9 M		
		and 50% R.H. When ambient conditions are					
		38° C DBT and 40% R.H. The room sensible					
		and latent heat gains are 1, 25,000 KJ/hr and					
		68,000 KJ/hr respectively. The ventilation is 65					
		m ³ /min. Minimum temperature of air supplied					
		to the room = 17° C. Determine:					
		i) Grand total heat ii) ERSHF iii) ADP					
		iv) Dehumidified air quantity. Take bypass					
		factor of cooling coil as 0.1.					
		OR					
10	a)	Relate the factors, which affect the Human	L3	CO3	5 M		
		Comfort and Effective Temperature.					
	b)	A Metrological laboratory is to be air	L4	CO3	9 M		
		conditioned for inside design conditions of 25°					
		C DBT and 50% R.H. When ambient					
		conditions are 40° C DBT and 27° C WBT. The					
		room sensible and latent heat gains are 14.5					
		KW and 3.2 KW respectively. The minimum					
		fresh air requirement is 50 m ³ /min. Minimum					
		temperature of air supplied to the room =					
		19 [°] C. Determine					
		i) Ventilation load ii) ERSHF iii) ADP					
		iv) Dehumidified air quantity. Take bypass					
		factor of cooling coil as 0.15.					